Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian
نویسندگان
چکیده
We introduce various families of irreducible homaloidal hypersurfaces in projective space Pr, for all r ≥ 3. Some of these are families of homaloidal hypersurfaces whose degrees are arbitrarily large as compared to the dimension of the ambient projective space. The existence of such a family solves a question that has naturally arisen from the consideration of the classes of homaloidal hypersurfaces known so far. The result relies on a fine analysis of hypersurfaces that are dual to certain scroll surfaces. We also introduce an infinite family of determinantal homaloidal hypersurfaces based on a certain degeneration of a generic Hankel matrix. The latter family fit non–classical versions of de Jonquières transformations. As a natural counterpoint, we broaden up aspects of the theory of Gordan–Noether hypersurfaces with vanishing Hessian determinant, bringing over some more precision into the present knowledge.
منابع مشابه
Hoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملHypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملDecency and Rigidity over Hypersurfaces
We study two properties of modules over an equicharacteristic or unramified local hypersurface R: decency and rigidity. We show that the vanishing of Hochster’s function θ(M,N), known to imply decent intersection, also implies rigidity. We investigate the vanishing of θ(M,N) to obtain new results about decency and rigidity over hypersurfaces. We employ a mixture of techniques from Commutative A...
متن کامل